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1. Introduction 

It is natural to hope that differential-geometric results dealing with closed 
manifolds will extend to yield interesting information for manifolds with 
boundary. A good instance of this occurs in two-dimensional Riemannian 
geometry. Each conformal class of metrics on a closed surface contains a 
metric of constant curvature: On a surface with boundary we might seek 
conformal constant curvature metrics with an additional boundary condition, 
for example, that the boundary have constant geodesic curvature. Then the 
positive solution of  this boundary value problem is equivalent to a version of  
the Riemann mapping theorem. Another instance occurs in Hamilton's results 
[ 14 ] for harmonic maps. 

In this paper our main concern is not with Riemannian metrics or harmonic 
maps (although we shall use Hamilton's result in section 3, and we return to 
Riemannian metrics briefly in section 4) but with Yang-Mills fields. More 
specifically, we will investigate boundary value problems for the Hermitian 
Yang-Mills equations over complex manifolds. There is a sizeable literature on 
these equations over closed manifolds, and in particular on the link between 
the equations and the holomorphic geometry of stable vector bundles [28,7,8], 
and our aim here is to see what kind of  counterparts we can obtain in the 
boundary case. In section 2 we begin by recalling some of the salient theory 
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and prove the main result of this paper: the unique solubility of the Dirichlet 
problem for the Hermitian Yang-Mills equation. The proof of this is quite 
straightforward and the main thrust of the paper is thus in the interpretation 
of the result, rather than the proof. We find connections with a number of  
topics, which are discussed in section 3. Perhaps the most notable of these is 
the link with the literature on the geometry of loop groups. It is well known 
that the space ~ G  of based maps from the circle to a compact group G has 
a natural complex Kfihler metric, related to the K~ihler metrics on coadjoint 
orbits of G. The complex structure can be obtained from a basic factorisation 
theorem which gives an alternative description 

I2G ~- LGC/Hol(D, Go), 

of (free) loops in the complexified group G c, modulo the boundary values of 
holomorphic maps from the disc to G c. We shall see that this factorisation is 
equivalent to a special case of our main theorem, and from this perspective 
we shall obtain generalisations of the above results in the form of hyper-K~ihler 
metrics on spaces 

Maps (0Z,  GC)/HoI(Z,  GC), 

where Z is a convex domain in C 2. We shall also study a variant of  the 
equations due to Hitchin, and we shall see that these lead to hyper-K~ihler 
metrics on the "complex loop groups" g2 G c, where G c is the complexification of 
G. We explain how these are related to the hyper-K/ihler metrics on complex 
co-adjoint orbits which have been found by Kronheimer. Other topics we 
discuss in section 3 are variational problems, constant mean curvature surfaces 
in hyperbolic space, and a "Neumann problem" for the Hermitian Yang-Mills 
equations. We finish the paper, in section 4, by mentioning a number of 
further directions which might be explored. 

Section 2. The main result 

2.1. THE HERMITIAN YANG-MILLS EQUATIONS 

We consider a holomorphic vector bundle E over a complex manifold Z,  
and a Hermitian metric H on the fibres of E. It is a simple fact that there 
is then a preferrred unitary connection induced on E, with curvature Fn say. 
In a local holomorphic trivialisation of  E, by sections si, we can represent the 
metric by a Hermitian matrix (which we also denote by H )  Hij = (si, sj)rl. 
Then the connection matrix in this trivialisation is H - I O H  and the curvature 
is 

FH = -O(H-I OH) = H - t  (-OOH - -OHH-I OH).  (1) 
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We now suppose that the base manifold Z has a fixed Kiihler metric, with 
Kiihler form co, and we let A " ~ z  l'l ~ ~o be the contraction A(O) = (o), 0). 
The Hermitian Yang-Mills tensor of a metric H on E is defined to be iAFH. 
The Hermitian Yang-Mills (HYM) equation for the metric H is the condition: 

iAFn = 0. (2) 

We will call the solutions Hermitian Yang-Mills metrics. We may equally 
refer to a unitary connection whose curvature has type (1, 1 ) and satisfies 
the condition (2) as an HYM connection; this causes no confusion, since the 
O-operator of such a connection defines a holomorphic structure. We could 
develop the whole theory for G-connections, where G is a general compact Lie 
group. This would involve little more than a change in notation. The proofs 
are slightly easier to write down in the basic case of a unitary group, but it 
is useful to have the general case in mind, so we will adopt the policy of 
sometimes stating results for a general group G, but assuming that G = U (n) 
in the proofs. We should recall that these equations have special significance 
in the cases when the complex dimension N of the base manifold is 1 or 
2. When N = 1 the map A is an isomorphism and the HYM connections 
are just the flat connections. When N = 2 the kernel of A consists of the 
anti-self-dual forms, which depend only on the Riemannian structure of the 
base four-manifold, and the solutions are the anti-self-dual connections, or 
instantons. 

In a local holomorphic trivialisation, as above, the HYM equation takes the 
form: 

HiA-6(H-IOH) = ½AH - iA-OHH-tOH = O. (3) 

Here we have used the fact that the Laplacian A (on functions) on a Kiihler 
manifold can be written A = 20*0 = 2iAO0. We see then that our equation 
is a non-linear, second order PDE whose leading term is the Laplace equation. 
As we have mentioned in the introduction, it is known that when Z is a closed 
Kiihler manifold the necessary and sufficient condition for the existence of 
the solution is that E be a "stable" holomorphic bundle. In the present paper 
we will consider the case when Z is the interior of a compact manifold Z 
with non-empty boundary OZ, and the Kiihler metric o) is smooth and non- 
degenerate on the boundary. We consider a holomorphic bundle E which 
extends to the boundary. (That is, E can be given by a system of transition 
functions on overlaps Us N U~ c Z which are smooth up to the boundary and 
holomorphic on the interior Us N U~ n Z.)  In this situation we will say that E 
is a holomorphic bundle over Z-. We consider the Dirichlet problem for the 
Hermitian Yang-Mills equations, in which the metric H is specified on the 
boundary. Our main result is very easy to state. 
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Theorem 1. Let E be a holomorphic vector bundle over the compact K?ihler 
manifold 7 ,  with non-empty boundary OZ. For any Hermitian metric f on the 
restriction of  E to O Z there is a unique metric H on E such that 

(i) H = f over O Z, 
(ii) iAFH = 0 in Z. 

This result is simpler to state than that for closed manifolds, since the 
delicate notion of stability does not enter. The reason for this will emerge 
clearly in the course of the proof. The result for manifolds with boundary 
is indeed not at all difficult; it is more or less an exercise in adapting the 
techniques which already appear in the literature on the Hermitian Yang-Mills 
equation. In particular, the result lies very close to some of those obtained by 
Simpson in ref. [26], who considers boundary value problems in an auxiliary 
way, although Simpson's direction is rather different and he does not state 
precisely the result we need. 

While it is, perhaps, disappointing that the boundary value problem requires 
little new input on the analytical side, it seems worth giving the proof, since it 
is so simple. For the sake of  exposition we will present two methods of proof. 
The first applies in the restricted case (which is where our main interest lies in 
this paper), when the bundle E is holomorphically trivial and we can use the 
continuity method. The second proof treats the general case using the "heat 
equation" method. Before beginning these proofs we will briefly recall some 
of the important properties of the Hermitian Yang-Mills equation. 

2.2. PROPERTIES OF THE HERMITIAN YANG-MILLS EQUATION 

We will use two key properties of  the Hermitian Yang-Mills equations. 
Both depend on a global analogue of  the formula ( l ) .  If H and K are two 
metrics on a holomorphic bundle E then t/ = K - ~ H  is a section of the bundle 
of endomorphisms End E, self-adjoint with respect to either metric. We have 
then 

OH = OK + rl-tOKq, 

FH = FK +-g(~-~OKq). (4) 

Here OH is the (1,0) part of  the covariant derivative ~H of the connection 
compatible with H, and similarly for OK. [The (0, 1 ) part of  each connection 
is the 0 operator associated to the holomorphic bundle E.] We see from (4) 
that the linearisation of  the HYM equations about a solution K is represented 
by the covariant Laplace equation: 

AKp -- 2iAOOKp = O. (5) 
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That  is, i f  rh is a one-parameter  family of  K-self-adjoint endomorphisms  with 
70 = 1 and i f  rltK is a solution of  the Hermi t ian  Yang-Mil ls  equat ion for 
each t, then Arp = 0 where p is the t-derivative of  rh at t = 0. This follows 
immediately by applying iA to (4) and using the fact that the covariant  
Laplacian AK = V~V/~ can be written 

AK = 20k0K = 2iA00K, 

when K is an H Y M  solution. (In general, A rp  = 20kOrp + 2i[AFK,p].) 
The second property we need brings in the non-linear term in the equation. 

Let 7-t be the space o f  n x n positive Hermi t ian  matrices, which we may think 
of  as the quot ient  GL  (n, C ) / U  (n) .  (In the case of  a general group G, we would 
work with the quot ient  7-t = GC/G.) Hermit ian  metrics on a trivial bundle 
are represented by maps into ~ ,  and for a general bundle E by cross-sections 
of  a bundle  ~ E  with fibre 7-t. There  is a natural complete,  G L  (n, (3)-invariant 
Riemannian metric on ~ given by T r ( h - ~ 3 h )  2. For  any two points h,k in 7-t 
we set 

tr(h,k) = T r ( k - l h )  + T r ( h - l k )  - 2n. 

If  we diagonalise h with respect to k, with relative eigenvalues ha, then 

a(h,k)  = ~--'~(ha ~ + ha - 2),  
a 

from which we see that a > 0, with equality only if  h = k, and that 

tr(h,k ) ,,, d (h ,k  ) 2 (6) 

as h tends to k, where d ( , ) is the Riemannian  distance function on 7-t. We 
can express d as a mono tone  function of  tr, and for each fixed k the balls in 
7-t, {hla(h,k) < R} are compact .  

Now if  H,  K are two metrics on a bundle E over  Z we can define a positive 
function tr(H,K) on Z fibrewise. Then  if  H and K are solutions of  the 
Hermit ian Yang-Mil ls  equat ion we claim that tr is sub-harmonic:  A (a )  < 0. 
To see this we apply iA to (4),  and also take the trace in the bundle E to get: 

A T r ( K - I H )  = A Tr  q = 2iA Tr(Oq 71--10Hq)" 

Choose a bundle trivialisation which, at a given point  z E Z ,  is K or thonormal  
and in which r/is diagonal with eigenvalues ha, and let n~b be the matr ix entries 
of  0-q, at z. Then  0 n r / h a s  entries n-ha and 

iA Tr(o-r/ r / - t  0#r/) = iA Z h a l n a b ~ ' , a b  ,= -- Z h a l l n a b [ 2 <  0. 
a,b a,b 
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Thus A Tr (K- IH)  <_ O. Interchanging H and K we see that T r ( H - I K )  is 
likewise sub-harmonic, and hence also tr (h, k) .  

This calculation leads immediately to the uniqueness of  the solution to the 
Dirichlet problem. For if  H, K are two Hermit ian Yang-Mills solutions on E 
with the same boundary value f ,  then a = a(H,K)  is a smooth function on 
Z with 

a>_O, da<_O, a = O o n O Z ,  

and it follows immediately from the maximum principle that a is everywhere 
0, and so H = K. [Alternatively, we can see this by writing 

~zlVal2 = / a d a  <_ O, 

which shows that Va  = 0.] 

2.3. THE PROOF OF THEOREM 1 FOR TRIVIAL BUNDLES 

If  the holomorphic bundle E in theorem 1 is trivial over Z we can prove 
existence by the continuity method. We represent a metric in a fixed holomor- 
phic trivialisation by a map H : Z --, 7-/. Any constant map gives a flat solution 
to the Hermit ian Yang-Mills equations, so the solution to the boundary value 
problem exists if  f is a constant. Since the space 7-/is contractible, it suffices 
to show that, if  fs is a continuous family of  smooth maps from OZ to 7-/, 
for s E [0, 1 ], and a solution H0 to the HYM equations with boundary value 
J~ exists, then it extends to a family of  solutions Hs with boundary values fs 
for all s. Following the standard pattern, we show that the set S c [0, l ] for 
which a solution exists is both open and closed. 

One sees that  S is closed by obtaining bounds on the solutions and their 
derivatives. Let H : Z - ,  7-/ be a solution with boundary value f ,  and K be 
any constant map. Then we have, by the maximum principle, 

maxz a(H,K)  = maxoz a ( f , K ) .  
This is an a priori bound which confines a solution to a compact sub-set of  7-/, 
determined by the boundary values. This elementary step, giving a C O bound 
on the solution, is the crucial one in which we see the difference between our 
present boundary value problem and the more difficult problem over closed 
manifolds. It is a fairly routine matter  to go on to obtain bounds on higher 
derivatives, and we describe two approaches to this. 

For the first approach we follow ref. [8] and suppose soo is the limit of  a 
sequence si in S, so there are solutions Hi = Hs,. By the maximum principle 
again, we see that the max imum value of  a(Hi, Hj) is attained on OZ, and 
it follows that Hi is a Cauchy sequence in the C O metric on Maps(Z,7-/),  
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and so converges uniformly to a limit H ~ - - a  continuous metric on E. The 
argument of ref. [8] gives a C I bound on H~ (and shows that the Hi converge 
in C l ) through a reductio ad absurdum. One considers points zi E Z where 
the supremum Di = supzlVHil, is attained, and rescales a ball of radius D~ -I 
about zi to a fixed unit ball, in which one applies elliptic estimates for the 
Laplacian. This argument extends without difficulty to the case of the boundary 
value problem, see ref. [26]. Once one has the C I bound it is very easy to 
obtain bounds on all higher derivatives: "bootstrapping" by substituting into 
the equation 

zlH = 2iA"OHH-IOH. 

This approach has the disadvantage of being nonconstructive--it does not 
yield any explicit bound on the derivatives of solutions. To do this we now 
consider a second approach, in which we assume for simplicity that Z is a 
domain in C N, with the Euclidean metric. We will explain a scheme which 
will give, in principle, explicit estimates on all derivatives of a solution H to 
the HYM equations in terms of its boundary values f .  

Fix a point w in OZ and let Kw be the constant metric with constant value 
f ( w ) .  We know that a = a(H, Kw) is sub-harmonic, so ifCw is the harmonic 
function in Z with boundary value: 

Cwloz = aloz = a ( f ,  Kw); 

the maximum principle gives 

0 < a ( z )  <_ Cw(z) for all z a Z. 

Now Cw is smooth up to the boundary, so for z near w, 

Cw(z) ~ C l z -wl ,  

so by (6) we get a Holder bound 

d(Hz,Hw)  < const.lz - w[ t/2, 

for all w on the boundary. 
We will now go from this Holder condition on the boundary, to a first 

derivative estimate over all of Z. For any vector v in C ° the endomorphism 
Pv = H - t V v H  satisfies AHPv = 0. This follows from (5) by considering the 
one-parameter family of solutions obtained by translating in the direction of 
v, Ht(z)  = H ( z  + tv).  It follows that the square norm [pv[2H = Tr p2 is 
sub-harmonic, 

/t Ip~ 12 = 2 (AHPv, Pv ) - 21Vnp~ 12 = -21Vnp~ 12 ~ 0. 
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Summing over a real orthonormal basis vi for C n we find that 

i 

is sub-harmonic, and so attains its maximum value on the boundary. Thus it 
suffices to estimate the derivative of the solution on the boundary. 

We now appeal to a scaling argument, much as in the first approach. For 
r > 0 let g2 (r) be the half-ball 

12 (r) = B2N (r) N {zi E cNI Re(zl )  _> 0}. 

We consider a solution /q of the HYM equations over £2(I) with boundary 
value f on {Re(zl) = 0}. We suppose that the modulus of the derivative 
[/:/-tV/Z/[n is bounded by 1 say over all o f / 2 ( 1 ) ,  and that /7/ takes values 
in a fixed compact set in H. Then we can substitute into the HYM equation, 
written in the form 

AH = 2iA (0-/-)/7/-~0H), 

and use standard elliptic estimates for the Laplace operator to obtain bounds 
on all the derivatives of F/ in an interior region 12 (r), for r < 1, in terms of 
the boundary data f and its derivatives. In particular, by bounding the second 
derivative and using the intermediate value theorem, we get an estimate for 
the derivative [/z/-~V/'/]0 at the point z = O: 

I[B-~vB]01 _< cv(c ) ,  (7) 

where V(e,0) is the supremum of d( / : / ( ( ) , / - ) (0))  as ( runs over the hemi- 
sphere {[~[ = e, Re(( l)  _> 0}, and e and C > 0 are determined by f .  We may 
suppose the same estimate holds for solutions over a slightly deformed copy 
of 12(1). 

We can now scale this inequality down, and apply it to small half-balls on 
the boundary of Z. Let D be the supremum of H- t [ (VH)[  over Z,  and w be 
a point in OZ where this supremum is attained. We rescale a ball of radius 
D -~ about w by a factor D, and translate the centre to the origin. Then we 
deduce from (7) that for some suitable constants C, e, there is a point z in Z 
with d ( z , w )  = eD -I such that 

D = I [H-IVH]wl  < C d ( H ( z ) , H ( w ) ) ( l z - w l )  -t  

< C e D d ( H ( z ) , H ( w ) ) ,  

i.e., d ( H ( z ) , H ( w ) )  >_ (Ce)  -I But the Holder bound above gives, since 
[ z - w [  = eD -I ,  the bound d ( H ( z ) , H ( w ) )  <_ const. (eD -l  )1/2, so combining 
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the two inequalities we obtain an upper bound on D. Thus we have a first 
derivative bound on solutions H, which could be written out explicitly in terms 
of the boundary data f .  From this point it is straightforward to bootstrap, 
using the HYM equation to obtain bounds on all higher derivatives. This 
completes our discussion of the "closedness" step in the continuity method. 

To see that S is open one applies the implicit function theorem. Let K be 
a solution of the Hermitian Yang-Mills equations in Z (smooth up to the 
boundary). Recall that if we parametrise the metrics H = r/K by endomor- 
phisms r/ of E, self-adjoint relative to H, then 

iAFn = iAO(~-IOK~). 

This is self-adjoint with respect to H, so the conjugate • (!/) = ~IU2iAFHt1-112 
is self-adjoint with respect to K. We fix a large index l (greater than the 
complex dimension of Z)  and consider the following spaces: 

(i) the space UI of L~ sections of EndE over Z, self-adjoint with respect 
to K; 

(ii) the space U°~/2 of L~_l/2, self-adjoint sections of EndE over OZ. 
We define a map 

Iv :  ui --, ut-, .  x ul°__z/v 

by Iv(p) = (~ (exp (p ) ) , p loz ) .  We claim that N gives an isomorphism 
between neighbourhoods of 0 in the two spaces. This follows from the inverse 
function theorem. The derivative of Iv at 0 is the map 

D N ' L 2 ( Z )  --, L2_2(Z )  x L~_ , I 2 (0Z )  , D N ( p )  = (½A~cP, Ploz). 

The usual Fredholm alternative for boundary value problems tells us that DN 
is an isomorphism so long as there is no non-zero r with Ant = 0, t[oz = 0, 
and this is immediate since for any such t, 

fzIVHT[2 = fZ(AnT, T) = O, 

SO VHt = 0 and the boundary condition forces t to be zero over Z. 
By the inverse function theorem, then, N is a local isomorphism and in 

particular for any small ~, there is a p with N(p) = (0, g ) .  But this is just 
the assertion that the set of boundary values f for which an L 2 solution H 
exists is open. If the boundary data are smooth then so is the solution by 
elliptic regularity. Thus it follows that in our path fs the set S for which there 
exists a solution is open. This completes the first proof, for the case when the 
bundle E is trivial. 
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2.4. THE PROOF OF THEOREM 1 FOR THE GENERAL CASE 

In the general case when E need not be trivial we can prove theorem 1 by 
using the "heat equation" method to deform an arbitrary initial metric to the 
desired solution. While this is slightly more complicated technically than the 
continuity method considered above, the main points in the discussion are 
very similar. For example, we make heavy use of the maximum principle for 
the linear heat equation rather than for the Laplace equation. 

For our given data f on OZ we consider the evolution equation 

H -~OH = -2iAFtt ,  Hloz = f ,  (8) 
Ot 

as in refs. [7,8,26], with some arbitrary smooth initial condition H0 extending 
f .  This is a parabolic equation, so standard theory gives short-time existence. 
The nub of the proof is to show that the solution persists for all time and 
converges to a limit. The proof of  long-time existence is given in ref. [26], 
and is not significantly different from the corresponding proof in the case of  
a closed base manifold. It depends on uniform estimates for the solutions and 
their derivatives, and one could make these estimates quite explicit in the 
same manner as in the second discussion of  section 2.3 above. It remains then 
to show that the solution to the evolution equation converges as t --. ~ ,  and 
it is here that we see clearly how the Dirichlet problem on a manifold with 
non-empty boundary differs from the problem on a closed manifold. 

The essential observation is the following: 

Lemma. Suppose 0 > 0 is a sub-solution o f  the heat equation on Z × [0,oo), 
i.e., O0/Ot + .40 < O. l f  O = 0 on OZ for all time then 0 decays exponentially 

supO(z , t )  < Ce -ut 
Z 

(where It depends only on Z and C on the initial value of  0). 

This standard fact can be seen from the spectral representation of the 
solution to the heat equation. By the maximum principle for the heat operator 
it suffices to establish the bound when O0/Ot + A0 = 0. This solution can be 
written 

-,It 0 = 2.., a`ie g`i, 
2 

where 2, g`i are eigenvalues and normalised eigenfunctions of  the Laplacian with 
Dirichlet boundary conditions on Z.  On the other hand, for k > I /2 dimc Z 
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the Sobolev embedding theorem gives an inequality, for any function ~b = 
Ebag~: 

I1~11~ < Const-Ilzlk~bl122 = Const. ~ 2 k l b a [  2. 

So 
1012 _< Const. ~ a22ke -2a', 

which gives the desired estimate, with any/1 bigger than the first eigenvalue 
of the Laplacian. 

To apply this lemma to the solution H of the non-linear equation (8) we 
consider the function C = IliAF•II 2 on Z x [0, oo). An easy calculation [7,10, 
ch. 6] shows that Og/Ot + ,JC < O, and the boundary condition satisfied by 
H implies that, for t > 0, g vanishes on the boundary of  Z.  Thus the lemma 
tells us that C decays exponentially, and in particular that 

f0 ° v ~  dt (9) < oo 

at each point of  Z.  But, pointwise on Z,  the time derivative of the family of  
metrics H, (z),  considered in the fibre 7-t- of  the bundle of  metrics 7-re, is the 
endomorphism iAF~/, so v ~  is the velocity of  Ht(z) in 7-G, measured in the 
invariant metric on 7-t- - ~ .  The bound (9) tells us that the path Hi(z) in 
~ -  has finite length. Since 7-t- is complete there is a limiting metric H ~  (z). 
It is easy then to show, as in ref. [7], that a sub-sequence of  the Ht converge 
in C ~ to H~ ,  and since iAFH tends to zero with t, this limit is the desired 
solution to the HYM equations. 

Note that we do not have this exponential decay for the heat equation 
on a closed manifold, since the Laplacian has a zero eigenvalue due to the 
constants. For the HYM heat equation over a closed manifold we can only say 
that the function ~ is bounded, which is useful in establishing the long-time 
existence of  the solution H but allows the possibility that as t ---, oo the metrics 
Ht "escape"to infinity. This is precisely what happens wheri the bundle E is 
"unstable", and it is the analysis of  this phenomenon which makes for the 
complication in the proofs. 

Section 3. Discussion of the theorem 

3.1. FACTORISATION IN LOOP SPACES 

Suppose that the bundle E in theorem I is topologically trivial over OZ. For 
any metric on this bundle over the boundary we can choose a orthonormal 
framing, and our result can be expressed in a slightly different way. 

Theorem 1'. The natural forgetful map sets up a 1-I correspondence between 
the equivalence classes of: 
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(i) holomorphic bundles over Z with a framing over O Z,  
Oi) unitary Hermitian Yang-Mills connections over Z on a bundle with a 

unitary framing over OZ. 

For a general group G we get a correspondence between holomorphic G c 
bundles over Z,  trivialised over the boundary, and HYM G-connections, with 
a G-trivialisation over the boundary. For simplicity we will use the expression 
"framed bundle" to mean a bundle with a trivialisation over the boundary. 

We shall now examine the content of this in the simplest possible case, 
when Z is the unit disc in C. In complex dimension one the Hermitian 
Yang-Mills equations just say that the connection should be flat, so we have 
a correspondence between framed holomorphic G c bundles and framed flat 
G-connections. Since the disc is simply connected any flat connection is trivial, 
and the trivialisation is unique up to the action of G. We see then that the 
equivalence classes of flat connections on a framed G-bundle can be identified 
with the quotient L G / G  of the free loop space 

LG = Maps(S I, G), 

under the translation action by G. Of course this is the same as the based 
loop space ~G.  Turning to the holomorphic side: any bundle over D is 
holomorphically trivial (as we can see, if we like, from the existence of a 
flat connection). The framings on the trivial bundle are just elements of LG c 
and plainly the equivalence classes of framed holomorphic bundles can be 
identified with the quotient LGC/L+G c where L+G c c LG c is the image 
under restriction of the group Hol(D, G c) of holomorphic maps from the disc 
to G c which are smooth up to the boundary. So the content of our result 
is the natural identification L G / G  = LGC/L+G c, which is one of the known 
"factorisation theorems" in loop group theory [22, ch. 8]. The assertion is that 
any loop in LG c can be written as the product of a unitary loop in LG and 
a loop in L+G c, and the factorisation is unique up to a constant element of 
G. This is the analogue for loop groups of the isomorphism, for any compact 
group G, G / T  = GO~B, where T is a maximal torus and B is a Borel sub-group 
(a maximal parabolic sub-group of GC). 

It is instructive to recall the proof of the factoristaion theorem [in the case 
G = U(n) ]  given in ref. [22], which is quite simple and direct. We recast 
the problem in another form: suppose E is a holomorphic vector bundle over 
the disc D with a metric on the restriction E[OD; we want to find a basis 
of holomorphic sections sl . . . . .  sn of E over D which give an orthonormal 
frame over OD. Let H be the Hilbert space of L 2 sections of E over OD, and 
H + c H the closed sub-space made up of the boundary values of holomorphic 
sections. We consider the action of multiplication by the holomorphic function 
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z (i.e. the identity function), which plainly takes H + to itself. One shows 
by index and continuity considerations that z H  + c H + has codimension n. 
Let V be the orthogonal complement of z H  + in H +. We claim that any 
orthonormal basis Sl . . . . .  sn for V has the desired properties. First, the Sa 
extend holomorphically to the disc since they are in H +. Second, it suffices 
to show that the pointwise inner products (Sa,Sb), for each pair a,b,  are 
constant as functions over the boundary circle, for then the fact that the Sa are 
orthonormal in L 2 implies that they are pointwise orthonormal. To do this we 
consider the Fourier coefficients of the function (sa, Sb): 

Pk = fS' (Sa'Sb)eikO dO, 

where of course z = e i° on the circle. If k > 0 we can write this as the L 2 
inner product 

/ *  

pk = (zksa,sb) = .L~ ( eikO sa, sb ) dO. 

This vanishes since ZkSa is contained in z H  + and sb is in the orthogonal 
complement V. Similarly, for negative values k = - I  < 0 we write P-I = 
(sa, ZtSb), and this vanishes for the same reason. So the only non-vanishing 
Fourier coefficient is P0 and thus (Sa, Sb) is constant. Finally we have to show 
that the extensions Sa are linearly independent over the disc. By a change of 
basis it suffices to show that s~, say, does not vanish anywhere in D. Suppose 
on the contrary that sl vanishes at a point (, with Iffl < I. Then we could 
write sl = (z - ~)z where z is in H. Then the inner product 

(s l , zz )  = fs~( ( z -  ()z ,  z z )dO  = fsl( l  - (e-ia)lrl2d0 

is non-zero, since [(1 < 1, and this contradicts the assumption that sl is 
orthogonal to z H  +. 

Given this simple alternative argument, it might seem perverse to reach 
the same conclusion in the model case Z = D through our approach of 
section 2, using non-linear analysis. The virtue of this latter approach is of 
course that it gives natural generalisations of the factorisation theorem, which 
may not be accessible otherwise. In one direction, we can consider a general 
Riemann surface 27 with smooth boundary 027 = S I say. We let .Mr be the 
moduli space of equivalence classes of framed fiat G connections over 27, 
so we have a map from -Mr to the representation variety Rz of conjugacy 
classes of representations of n~ (27) in G. The fibre of this map (over the 
trivial representation) is the loop space L G / G .  On the other hand Ms can 
be identified with the framed holomorphic G ¢ bundles and, since all these 
bundles are holomorphically trivial, we get a description Mr  = LGe /L+ 'ZG ¢, 
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say, where L +,z denotes loops which extend holomorphically over 27. (It 
would be interesting to see if one can obtain this picture by extending the 
Fourier theory arguments of  the previous paragraph.) 

If  the boundary of Z is empty the same results hold, with the technical 
modification that we must restrict to stable bundles. This is the content of 
the theorem of Narasimhan and Seshadri [21,3]. We get a finite-dimensional 
moduli space Mz which can be described either as the representation variety 
(of fiat connections), or as the moduli space of stable holomorphic bundles. 
It is natural to regard the theorem of Narasimhan and Seshadri and the 
factorisation theorem for loops as companion results: they deal with the two 
extremes in the general class of  framed moduli spaces of fiat connections--in 
the one case the framing data are vacuous and in the other the fiat connections 
are trivial. 

In another direction, we can move to higher dimensions, for example to 
a strictly pseudoconvex domain with smooth boundary Z c C N. Here we 
encounter a small technical difficulty. The space Z is a Stein manifold so, 
according to a theorem of Grauert [ 12], all topologically trivial holomorphic 
vector bundles over Z are also holomorphically trivial. We would like to 
apppeal to .a variant of this theorem, dealing with bundles over Z: we would 
like to say that any holomorphic bundle over Z,  in the sense of  section 2.1, 
has a holomorphic trivialisation which is smooth and non-degenerate up to 
the boundary. The author has unfortunately not been able to find such a result 
in the literature. In the appendix we will give an ad hoc argument covering 
the case we are most interested in, when N = 2. But the result is almost 
certainly true in general so for the rest of  the discussion in this paragraph 
we will not explicitly restrict to two variables. Proceeding then by analogy 
with the model case, we consider the space of  framed (topologically trivial) 
holomorphic bundles over Z.  On the one hand we can write this as a quotient: 
Maps (OZ, G c)/Hol (Z, G c), where Hol( ) denotes holomorphic maps smooth 
up to the boundary, and we have supressed the obvious map induced by 
restriction to the boundary. On the other hand we can apply our theorem, 
which now takes the form: 

Maps (0 Z, G c) / Hol (Z, G c ) ~ Isomorphism classes of framed Hermitian 

Yang-Mills connections over Z. (10) 

3.2. KAHLER AND HYPER-K,~HLER METRICS 

Another aspect of  loop group theory which fits in naturally with our discus- 
sion involves the existence of  a K~ihler metric on LG/G (see ref. [22, section 
8.9] ). We will first digress to recall basic facts about moduli spaces of connec- 
tions, and the metrics on them (compare ref. [10, ch. 4]).  Let us consider Z 
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just as a Riemannian manifold with boundary for the moment, and let/3z be 
the space of framed G-connections over Z. This can be made into an infinite 
dimensional manifold, and the tangent space at a framed connection A can be 
identified with the kernel of the operator d,] : 12~ ---, 12 °.  To see this, we note 
that ~ may be regarded as the quotient of the space A 7 of connections over 
Z (smooth up to the boundary) by the group ~Z of gauge transformations 
equal to the identity over the boundary. We wish to identify a neighbourhood 
of an equivalence class [A] e /3  7 with a neighbourhood of 0 in kerd].  Just 
as in the usual set up for closed manifolds one needs to see that for small 
a e s'2z I (End E) there is a unique gauge transformation g, close to the identity, 
with 

d] ( g - l  dAg + g a g  - t  ) = O,  gloz = 1. (11) 

This follows from the implicit function theorem, starting with the unique 
solubility of the Dirichlet problem 

d~dAq~ = p , dploz = O, 

which is the linearisation of ( 11 ). (Here we can introduce appropriate Sobolev 
spaces and construct a quotient /3 7 as a Banach manifold, or stay with C °o 
connections and obtain a Frechet manifold.) 

We will now discuss the structure of the moduli space of framed Hermitian 
Yang-Mills solutions A~ 7 c B 7. We begin with a formal treatment. Let 
[A] e M 7 be a solution and consider a nearby connection A + a. We write 
a = a -  a* , where a 6 g2°,l(EndE), a* e g2t '°(EndE). The Hermitian 
Yang-Mills equations comprise the pair 

F°'2(A + a) = OAa + a A a  = 0, 

i A F ( A  + a) = i A ( O A a - O o ~ * - a *  A a - - a A o t * )  = 0, 

whose linearisations are 

O A a = O ,  i A O ~ - i A O ~ *  = 0 .  

However, by the K~ihler identities, the gauge fixing condition d j a  = 0 can be 
written as 

d j  (a - a*) = iAOAa + iA-OAa* = O, 

so the linearised equations and the gauge fixing condition combine into the 
complex-linear equations Oaa = OA a = 0. 

We might expect then that 3A 7 is an infinite dimensional manifold whose 

tangent space at [A] is identified with the kernel of OA * Oa, a vector space 
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with an obvious complex structure. This is certainly correct if  the complex 
dimension N = 1 or 2, which are our primary concerns; in the higher di- 
mensional case, when one encounters over-determined equations, it is possible 
that M 7 might have singularities. In these two cases we have alternative ex- 

pressions for the operator OA • Oj.  When N = 1 it can be identified with the 
operator dA • d~ and when N = 2 with the operator d~ ~ d,~, both acting 
on one-forms with values in the bundle of  skew adjoint endomorphisms of  E. 
For definiteness, let us fix attention on the case N = 2, i.e the case of  real 
dimension 4. (The ensuing discussion applies equally well to any Riemannian 
four-manifold with boundary.)  The symbol of  the operator d f  • I21 --* 12 2 is 
surjective and this means that we can find a right inverse P • 12 2 --, 121 which 
is bounded on Sobolev spaces: 

d+ P a  = a , IIPalIL$ ~ Const.l lallLL , 

and with d*Pa  = 0. One way to construct P is to embed Z isometrically in 
a closed Riemannian manifold X and choose an extension operator E, from 
forms on Z to forms on X, which is bounded on Sobolev spaces (see ref. [ 18, 
p. 23]).  Over X there is a bounded operator Px which is an inverse to d~ 
modulo a finite dimensional space, i.e., we have d + P x r  = r + H ( r ) ,  where 
H is a finite-rank map. Then it is easy to see that we can choose Px so that 
H ( r )  is supported in the complement of  Z ,  so we can just take P = Px o E 

and the estimates for P follow immediately from those for Px and E. 
A local model for M z  can now be constructed in just the same way as in 

the case of  a closed base manifold. For simplicity we work in fixed Sobolev 
spaces: we seek solutions in the form A + a + Pa,  where d~a = d+ a = O. 

The implicit fuunction theorem in Banach spaces shows that for any small a 
there is unique small solution aa to the equation 

F + ( A + a + P a ) = = - a +  ( ( a + P a ) ( a + P a ) )  + = 0 ,  

and that all nearby solutions are obtained in this way. So we conclude that, 
when N = 2, M E is a manifold, with tangent space 

T.M z ~- ker(OA ~ O~ ) = ker(d~ ~ d~  ). 

A similar, but easier, discussion applies when N = I. 
We now move on to Riemannian metrics. The L 2 norm on one-forms 

induces a metric on the tangent space of  M z :  

Ilall2 = / z  la12 d?x, a ~ ker OA • 0~. 
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This makes A4z into an infinite dimensional Riemannian manifold, and in fact 
a K~ihler manifold. The Kfihler property follows from the general symplectic 
reduction principle, which has been extensively discussed in similar Yang-Mills 
problems. First, the tangent space kerO~90* has an obvious complex structure, 
since O ~ O* is a complex linear operator. The skew form corresponding to 
the L 2 metric under this complex structure is 

O(a,b)  = f z T r ( a A b ) A w U - l .  

The map A ~ I2° (EndE)  defined by A ~ AF(A)  is a moment map for 
the action of the gauge group G 7. The calculation is just the same as in the 
case of a closed manifold [3,17,10]--the fact that the gauge transformations 
are the identity on the boundary permits the integration by parts used in 
the calculation. Then the form £2 appears as the usual induced form on the 
"Marsden-Weinstein quotient" (the quotient of the zeros of the moment map 
by the action of the symmetry group). In this way one sees that £2 is a 
closed two-form on .Adz. Similarly, one sees that the almost-complex structure 
on M z ,  visible from the description of  the tangent space, is integrable by 
appealing to the alternative description of M Z  as a moduli space of framed 
holomorphic bundles. 

In the model case, when Z is the disc and we have seen that the moduli 
space can be identified with the loop space I2G, it is easy to verify that 
the metric we have defined agrees with the Kfihler metric considered in ref. 
[22]. So we can again regard our discussion as providing a generalisation 
of this piece of  loop group theory. Using our identification (10) we obtain, 
for example, K~hler metrics on spaces Maps(0Z,  GC)/Hol(Z, G c) when Z is 
a pseudoconvex domain. On the other hand we can say more in the four- 
dimensional case. Suppose that Z is a domain in Euclidean space R 4, with 
smooth boundary. The moduli space M z  together with its Riemannian metric 
depends only on the metric on R 4. For any choice of complex structure, 
R4 _~ C 2, Z becomes a complex manifold and .A4z acquires a K~ihler structure 
through the discussion above. Putting this together we see that M z  has a 
hyper-Kahler structure: an action of the quaternions I, J, K on T M z ,  each 
one of which defines a complex K~ihler structure. On the level of tangent 
spaces, we see the action of the quaternions on ker d]  ~ d~ from the fact that 
this operator is quaternion-linear. (This is, again, a familiar principle in four- 
dimensional Yang-Mills theory, see, for example, ref. [19].) In particular, we 
see that if Z c C z is convex (so pseudoconvex for any choice of complex 
structure) then there is a hyper-K~ihler metric on Maps(0Z,  GC)/Hol(Z, G¢), 
which we can regard as a four-dimensional analogue of the Kfihler metric on 
LGC/L + G c. 
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3.3. VARIATIONAL ASPECTS, THE WESS-ZUMINO-W1TTEN ACTION 

The Hermitian Yang-Mills equations over a closed base manifold can be 
viewed as Euler-Lagrange equations, but for a non-local Lagrangian functional. 
Let Met (E)  be the space of Hermitian metrics on a holomorphic bundle E 
over a K~ihler manifold Z,  and suppose initially that Z is closed. We define a 
one-form 0 on Met (E)  by assigning to a tangent vector ~1 at a point H ~ 7-/E 
the number / I  

O(q) = . /zTr(q iAFH). 

The formula (4) for the variation F shows that the exterior derivative of  0, 
at the point H,  is 

dO (t/t, q2) = fz Tr ( q l A ~ / q 2 -  tl2A~tttll), (12) 

where db  = OhOn. This expression vanishes, since d~ is self-adjoint. This 
means that 0 is the derivative of a function R on Met(E) ,  unique up to 
a constant, and the Euler-Lagrange equation t~R = 0 is, by construction, 
the Hermitian Yang-Mills condition AFH = 0. Now if Z has a boundary 
the same discussion goes through when we restrict attention to metrics with 
a fixed boundary value. For the expression (12) can then be written as a 
boundary integral 

fo Tr(qtV,q2- r/2V,,ql), 
z 

where V,  denotes the normal component of  VH on the boundary, and this 
vanishes for variations r/i which are zero on OZ. 

The indirect definition of  these functionals (which are related to determi- 
nants of  differential operators) makes them rather mysterious; we refer to 
refs. [7,8,26] for further discussion. We wish here to examine the case when 
E is the trivial bundle, and we regard our metrics as maps from Z to the 
homogeneous space ~ = GC/G. In this section we consider only the case of  
one complex variable and suppose that Z is a domain in C. We compare the 
Hermitian Yang-Mills condition -O(H-IOH) = 0, with the harmonic map 
equation, the Euler-Lagrange equations for the energy functional 

C(H) = f [H-IVHI 2 = f Tr(H-'VH) 2. 

A short calculation shows that the harmonic map equation takes the form 
-g(H-IOH) -O(H-t'OH) = 0. The two equations differ by the term 

H-IOHH-I-SH + H-I-OHH-tOH. 
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This is the commutator [~lx, tl;,] of the endomorphisms tl~ = H-IVx H, rl2 = 
H-tV.vH representing the derivative of H in the x , y  directions in Z c C. 
Now let ~b be the canonical GC-invariant three-form on the homogeneous space 
7/. At the identity this is represented by 

~b(¢1,¢:,¢3) = (Tr)(¢l [~2,¢3]). 

We consider a reference map H0, with boundary value f .  For any other map H 
with this boundary value we choose an arbitrary extension H • Z x [0, 1 ] ~ 7/ 
w i t h H ( z , 0 )  = H 0 , H ( z ,  1) = H a n d H ( z , t )  = f ( z )  f o r z E t g Z  and we set 

I (H) = fz H*cb. x[O, II 

This is independent of the extension H, since ~b is closed and 7/ is  contractible, 
so we can regard I as a functional on the space of maps from Z to 7/ with 
the given boundary value. The variation of I can be written 

51 = f zTr[H-IJH (H-IOHH-t-OH + H-I-OHH-tOH)], 

so we see that the Hermitian Yang-Mills equation, in this set up, is the 
Euler-Lagrange equation for the functional C + I. Indeed C + I is just a local 
expression for the functional R. The merit of this expression is that it displays 
a link with the Wess-Zumino-Witten (WZW) action, which has been studied 
in conformal field theory [29,30]. The WZW action is a perturbation of  the 
harmonic map energy, for maps from a two-dimensional domain Z into a Lie 
group G, obtained by the procedure above using the canonical three-form ~b' 
on G. We fix a reference map go : Z ~ G and for any other map g with the 
same boundary value we choose an extension ~ : Z x [0, 1 ] ~ G. Then define 

JfZ -I ') JfZ Cwzw(g) = Ig Vgl" + ~*(~b'). 
xl0,11 

The Euler-Lagrange equations for this WZW action are -6(g-lOg), which 
have just the same form as the Hermitian Yang-Mills equation except now the 
independent variable takes values in the group G rather than the homogeneous 
space 7/ = GC/G. (The space GC/G is the non-compact dual of  G, regarded 
as a symmetric space.) More precisely, since ~b' is not exact in G, the WZW 
action is only defined up to a multiples of a period of ~b', but this does not 
affect the local discussion. 

To extend this analogy we consider the solutions of the two Euler-Lagrange 
equations. First we consider the Hermitian Yang-Mills equation, -O(OHH -I ) 
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= 0, for a metric on a flat bundle. This is, in a sense, a trivial equation since 
we know that the general local solution has the form H = u'u ,  where u is 
a holomorphic map into G c. More generally, if we consider the complexified 
version of this: the equation - 6 ( g - t O g )  = 0 where g takes values in the 
group G c, then the general local solution has the form g = v tt, where u is 
holomorphic and v is anti-holomorphic. The WZW equation for maps into 
the original group G then reduces to the algebraic condition u*u = ( v ' v )  -I  
for holomorphic u and anti-holomorphic v. The relation with the Hermitian 
Yang-Mills case appears more vividly if we consider the WZW equation 
for a two-dimensional Lorentzian space. This is obtained from the same 
Lagrangian but using the Lorentzian inner product to define the harmonic 
maps energy Idgg-I I  2. The Euler-Lagrange equations are 0+ ( g - l O _ g )  = O, 
where 0+ = O/Ox + O/Ot , O_ = O/Ox - O/Ot. This is a trivial equation, 
in the same sense as the Hermitian Yang-Mills equation above, in that the 
general solution can be immediately written down: g (x, t) = u (x + t)'v (x - t), 
where u and v map into G. 

We will not push this parallel between the Hermitian Yang-Mills theory 
and the WZW action (which may well exist, in some form, already in the 
physics literature) any further. From the differential-geometric point of view 
it provides a useful new slant on the HYM equations. To illustrate this we will 
describe a link with constant mean curvature surfaces in hyperbolic space. In 
this case we take our group G to be SU(2), so G c = SL(2,C) and the quotient 
space 7-/ (of metrics with determinant I) is a model for hyperbolic space of 
three dimensions. The three-form ¢ on 7-[ is just the volume form, and so 
the integral I ( H )  is the (signed) volume enclosed between the two surfaces 
H (Z),  H0 (Z) in the three-space. In particular, this term is independent of the 
parametrisation of the surface H (Z) - - i t  only depends on the map H through 
its image. Let us shift then to a Lagrangian £ on unparametrised surfaces 
27 c 7-/, with fixed boundary values and using a reference surface 270. We put 

£(27) = Area(27) + I(27),  

where I ( Z )  is defined by the volume as above. It is obvious geometrically 
that the critical points of r. are just the surfaces of constant mean curvature 
1. On the other hand, the same relationship holds between this functional 
and the Hermitian Yang-Mills function £ + I as between the usual area and 
the harmonic maps energy: Z2(Image(H)) is a lower bound for £ + I, which 
is attained precisely when the map H is conformal. It follows then that the 
constant mean curvature surfaces in 7~ are just the images of maps H : Z ~ 
which are both conformal and satisfy the Hermitian Yang-Mills equations 
~ ( H - l a H )  = 0. We know that the general solution of the latter have the 
form H = u'u ,  where u : Z ~ SL(2,C) is holomorphic. We now observe 
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that if V is a real Euclidean space and D : C ~ V ® C is a complex linear 
map then the composite of D with the linear projection from V ® C to V is 
conformal if and only if the image of D is a null vector for the complexified 
quadratic form on V®C. Applying this to the derivative of u we see finally that 
constant mean curvature surfaces in hyperbolic three-space SL(2 ,C) /SU(2)  
are obtained as the projections of null holomorphic curves in SL(2,C), i.e., 
curves whose tangent vectors are null for the invariant quadratic form on 
SL(2,C). This is precisely the description due to Bryant [5], extending the 
Weierstrass construction for minimal surfaces in R 3. 

3.4. HITCHIN'S EQUATIONS 

A interesting extension of  our main existence theorem is obtained by adding 
an auxiliary "Higgs field", as done by Hitchin in ref. [15]. We have seen 
that our main theorem is an analogue, for manifolds with boundary, of the 
Narasimhan and Seshadri theorem, which identifies stable bundles over a 
closed surface with fiat bundles. Hitchin extends the Narasimhan and Seshadri 
theory by considering the equations, for a unitary connection A on a bundle 
E over a closed Riemann surface, and a Higgs field ~ E I21'°(EndE): 

8,~+ = 0, F,~ + [ + , ~ ' ]  = 0. (13) 

Notice that these equations are conformally invariant; they do not depend on 
a metric on X. chin (and, in more generality, Corlette [6] and Simpson 
[26]) showed that, on a closed surface, the moduli space M c of solutions of 
this equation had two different descriptions: 

(i) as a moduli space of "stable pairs" (E,4~) where E is a holomorphic 
bundle and 4) is a holomorphic section of EndE ® Kz-; 

(ii) as a space of  conjugacy classes of irreducible representations of  nl (X) 
in G c. 
In the first description M c appears naturally as a completion of the cotangent 
bundle of the moduli space M = Ms,  and in the second description as 
a complexification of  M. These two descriptions depend on two existence 
theorems, and we will now explain how to obtain analogues of  these results 
in which, following the scheme of section 3.1, the space M is replaced by the 
loop group g2G. The proofs will involve, of  course, the solution of appropriate 
boundary value problems. 

We consider first Hitchin's equations on a fixed holomorphic bundle E 
with a fixed holomorphic section ~b of End E ® K. For simplicity we will just 
work here with the case when the base manifold is the disc D, and fix a 
holomorphic trivialisation, so a metric on E is a map from D to 7-/ as before 
and ~b = ~ d z  where ~u is a holomorphic matrix-valued function, or more 
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abstractly a holomorphic map from D to the Lie algebra of G c. We consider 
the Hitchin equation 

FH + [q~,~b*"] = -O(H-lOH) + [~b,H-~b*H] = 0 (14) 

as an equation for the map H : D ~ ~ .  We suppose that 4~ is smooth up to 
the boundary. The first result we need is then 

Theorem 2. For any metric f on O D, and any q~, there is a unique solution H 
to the Hitchin equation (14), with H = f on OD. 

Of course, if $ -- 0 this just reduces to our main theorem, in the case of the 
disc. This extension can be proved by a straightforward modification of either 
of the methods used in section 2. Once again, the result is almost contained 
in the work of Simpson [26]. We will be content here to explain how the two 
key properties of section 2.1 extend to the Hitchin equations. 

The calculations here can most easily be understood by going up to four 
dimensions. Hitchin's equations can be obtained as the dimension reduction 
of the instanton equations, for translation-invariant solutions. We write our 
Higgs field as ~b = ~ d z  = ½(Vii + ~t2)dz, where ~l,~t2 are skew-adjoint 
sections of End E. Then, taking standard coordinates Pi,P2 on ~2, we consider 
the connection 

,~ = A x d x  + Aydy  + ~q dpl + ~zdp2 

over Z x ~2 c C X ~2 ~ ~4. It is easy to check that (A,~b) satisfy Hitchins 
equations if and only if ,~ is an instanton. Similarly, eq. (14) for a metric 
H over Z goes over to the HYM equation for a translation-invariant metric 
/7/. Thus we obtain immediately from our calculations that the linearisation 
of eq. (14) about a solution H is given by A/:tp = 0. But this can be written 
back on Z as (AH + qS*nck)p = 0. The operator A H + ~*n~ is self-adjoint 
and positive on sections p which vanish on the boundary, so we can use the 
implicit function theorem just as before to deform solutions. In the same way, 
if H and K are two solutions to (14) we extend them to HYM solutions/:/, K, 
so a ( H , K )  = a ( H , K ) ,  and the inequality A a ( H , K )  <_ 0 follows from that 
for HYM solutions. Using these remarks we can obtain theorem 2 by copying 
the proofs of section 2. 

We now move on to the analogue of Hitchin's second main result. Let 
(A, ~b) be a solution of Hitchin's equations and consider the G c connection 
A + ~b + 4)* on E. The curvature of this connection is 

F ( A  + ~ + ok*) = F ( A )  + OA~ + OA(ff)* ) + [$,~b*], 

which vanishes. So E has a flat G c structure, which may be trivialised over 
the disc. The metric on E appears as a map H from D to 7-/, and in this 
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trivialisation Hitchin's equations are the condition that H be a harmonic  map, 
with respect to the invariant metric on 7-t (see refs. [6,9] ). The other existence 
theorem we need involves the Dirichlet problem for harmonic maps. 

Proposition 3. For any  m a p  f : O D ---, 7-t there & a unique  harmon ic  m a p  

h : D ~ 7-t with h = f on O D. 

This is a special case of the general results of  Hamilton [14], for maps 
into spaces of negative curvature. (The space ~ is the Riemannian product 
of a Euclidean space and a space of  strictly negative curvature.) Note that 
Hamilton's proof, using the heat equation method and following that of  Eells 
and Sampson for closed manifolds, is a model for the heat equation technique 
we have applied in section 2 to the Hermitian Yang-Mills problem. 

In sum these solutions of these two boundary value problems give us two 
ways of  describing the solutions of Hitchin's equations over the disc, and we 
will now unravel the threads between them. Let X be the space of equivalence 
classes of  solutions of  Hitchin's equations on a G bundle E over the disc, 
with a G trivialisation over the boundary. Any solution endows E with a 
holomorphic structure, which we may trivialise. Then, as in section 3.1, the 
boundary data yield a map 2 from OD to G c. The Higgs field is represented by 
a holomorphic map ~, : D --+ Lie (GO). The choice of  holomorphic trivialisation 
goes over to the action of  the group Hol(D, GC). The group action is: 2 H y2, 

H y~,?,-1 for y 6 Hol(D, GC). Our first existence theorem is the assertion 

X ~  
L G  c x Hol(D, Lie(G c)) 

L+ G c 

The fight hand side of this equivalence is a complex vector bundle ~? over 
L G C / L + G  c , which we have identified in section 3.1 with the loop space s'2G. 
The fibres are modelled on the complex vector space V = Hol(D, Lie(GC)). 
We would like to identify ]?, and hence X with the cotangent bundle of  £2 G, 
or more precisely with a dense sub-bundle of  the cotangent bundle. (This 
complication arises from the infinite dimensionality of  the space, and we 
do not want to get involved in technicalities of  topological vector spaces.) 
That is to say, we want to define a complex bilinear pairing of  the fibres 
~?y x ( T I 2 G ) r  ~ C, which is non-degenerate, in that no non-zero vector in ~?y 
annihilates all of TOy. We consider first the fibres over the identity. We have 
a bilinear form on the space of  maps from S l in Lie(GO): 

( f ' g )  = fs, T r f g d z ,  
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and the sub-space of boundary values of holomorphic maps is isotropic, by 
Cauchy's theorem. So we get an induced pairing on the quotient: 

Maps (S l, Lie (G c ) 
V x  - , C .  

V 

This is non-degenerate and is the required pairing, since V is the fibre of 
~; over 1 and the second term is the tangent space of the quotient T ~ G  = 
T ( L G C / L + G C ) .  

Then it is easy to check that this pairing transforms properly under the action 
of L G  c, so that it can be extended to all of the fibres of ),' by translation. 
This description of X c T * ~ G  is of course the analogue of Hitchin's first 
description of M e . 

Going on to the other description, any solution (A,~b) endows E with a flat 
G ¢ structure, and the solution can then be recovered, using our second existence 
theorem, from a map f : OD --, G c. A G-trivialisation over the boundary 
corresponds to a lift of this map to G c. The change of flat trivilialisation 
goes over to the natural action of G c. We see then that our second existence 
theorem is the assertion that X ~- L G C / G  c = ~2G c, the space of based loops 
in the complexified group G c. So we have two descriptions of the same space 
X, which are precise analogues of Hitchin's two descriptions of the space M c 
in the case of a closed surface. 

We may read off some interesting facts from these alternative descriptions, 
just as in Hitchin's work. For example, using the first description, we see a 
natural C* action on X, in which we multiply the Higgs field ~b by a complex 
scalar, i.e., the action of the scalars on the fibres of the vector bundle )2. The 
fixed point set of this action is the zero section, the copy of ~ G  embedded 
ins ideX = V = ~ G  c. 

We also see that X has a hyper-Kfihler structure. This follows just the same 
pattern as the four-dimensional case discussed above: we can regard it as a 
variant of the four-dimensional case if we interpret the solutions of Hitchin's 
equations over D as invariant instantons on D x R 2, in the manner above. 
The different complex structures are visible in the two descriptions of X: one, 
I say, is the natural complex structure on the vector bundle ~;, and this is 
preserved by the C ° action. Another, J say, is the natural complex structure 
on the complexification ~ G ¢. This is not preserved by the circle action, and 
conjugation by this action generates a family of complex structures, one of 
which is the third element K of the hyper-K/ihler triple. All of this is exactly 
parallel to Hitchin's discussion of the space M c. 

We shall now find some finite dimensional manifolds, with induced hyper- 
Kfihler metrics, inside the infinite dimensional space X. Recall that if H is 
any Lie group there is a circle action on the based loop space ~ H  with the 
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action of 2 e S I given by 
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[2(y) ] (z )  = y(2z)y(2)  -I, y r g 2 H ,  z r S  I. 

A loop y is fixed by this action if y(2z) = y(2)y(z) ,  i.e., if it is a closed 
one-parameter sub-group in H. (More geometrically, if we think of O H  as 
the framed fiat H connections on the disc then the action is just the obvious 
one induced by rotations of the disc. The one-parameter sub-group appears 
in this picture as the action of S ~ on the central fibre of a bundle over the 
disc.) Thus the fixed point set falls into different components, labelled by the 
conjugacy class of the representation S I ---, G, and each component is a copy 
of an adjoint orbit of G in its Lie algebra--the orbit of the tangent vector to 
the one-parameter sub-group. 

We wish to consider this picture in two cases. The well-known case is when 
H = G is a compact group. The adjoint orbits then have homogeneous K~ihler 
structures, with Kfihler form the Kostant-Kirilov form (we use the Killing 
form to identify adjoint and co-adjoint orbits), and these are isometrically 
embedded in 12G as the fixed points of the circle action. More precisely, the 
"algebraic " orbits, for which the K~ihler form is integral, embed in the loop 
space. 

The more novel case is when H = G c is the complexified group and the fixed 
point set consists of certain complex adjoint orbits. (We should be careful not 
to confuse this circle action with the restriction of the C" action above.) We 
identify 12G ¢ with the space X of framed solutions to Hitchin's equations. 
Then the circle action is again induced by rotations of the disc, and it is easy to 
see that these preserve the metric and all three complex structures on X. Thus 
the fixed point set inherits a hyper-K~ihler structure. Hyper-K~hler structures 
on complex co-adjoint orbits have been found previously by Kronheimer [ 19 ] 
(who considers a larger family of orbits) and we shall now see that our 
construction recovers his metrics. 

Kronheimer obtains hyper-K~ihler metrics in ref. [19] from the solutions of 
Nahm's equations 

dTi/dt = [Tj, Tk], ( i , j , k )  cyclic, 

for Lie(G)-valued functions Tl, T2, T3 of a real variable t. He considers the 
set N of solutions over the half-line ( -oo,0]  which converge as t ~ -00 to 
a fixed commuting triple Zl,Z2,r3. He shows that, under appropriate non- 
degeneracy conditions, N has a hyper-K~ihler metric and that the map which 
assigns Tt (0) + iT2 (0) to a solution identifies N with the adjoint orbit, under 
G c, of rl -I- it2. Now solutions of Nahm's eqations can be viewed as instantons 
which are invariant under translation in three variables, so Kronheimer's 
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solutions can be identified with certain invariant instantons on (-c~,0]  x •3, 
or, dividing by a discrete set of translations in one direction, instantons on 
(-c~,0]  x S l x R z which are invariant under rotation in the S l factor and 
translation in the R 2 factor. But we know that instantons invariant under 
two translations go over to solutions of Hitchin's equations, so Kronheimer's 
solutions yield St-invariant solutions of Hitchin's equation over the cylinder 
(-00, 0] x S ~. Finally, using the conformal invariance of Hitchin's equations 
we interpret these as rotation-invariant solutions over the punctured disc 
D \ {0}. Explicitly, from a solution Ti of Nahm's equations we can write down 
a solution 

a r = O  

Ao = Tl (logr) 

~b = ((T2 + iT3)(logr))z -l  dz, 

to Hitchin's equations. In general these solutions will be singular at 0. The 
singularity is removable if z2 = z3 = 0 and r ~ satisfies the integrality condition 
exp(zl) = 1. We see then that in this case the solutions considered by 
Kronheimer match up precisely with the rotation-invariant solutions over the 
disc, and it is straightforward to check that the hyper-K~ihler metrics are the 
same. 

It would be interesting to extend this discussion to include the other solutions 
found by Kronheimer. For this one would have to consider singular solutions 
of Hitchin's equation, in which ~b has a pole and A has a non-trivial limiting 
holonomy around the singularity. These kinds of singularities arise naturally 
in various contexts and have been considered by a number of authors recently 
[4,20]. 

3.5. CONNECTIONS OVER THE BOUNDARY 

We will now discuss our main result, in the case of two complex variables, 
from a different perspective. In general, if W is an oriented Riemannian 
four-manifold, with boundary Y, it is reasonable to hope that any connection 
over Y extends to a solution of the full (second order) Yang-Mills equations 
over W. For connections close to the trivial connection one can see this 
using the implicit fuction theorem to pass to the linearised problem. For 
the first order instanton equations the picture is quite different. The sub-set 
Lw of boundary values of instantons has infinite codimension in the space 
By of gauge equivalence classes of connections over Y. In fact it is natural 
to think of Lw as having roughly "half the dimension" o f /3 r ,  a point of 
view which underlies the theory of Floer homology [2,11 ]. We will now see 
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what information our results give about these sub-manifolds in the case when 
W = Z is a complex K~ihler surface. 

To interpret our results in this way we introduce two new notions, adapted 
to the induced CR structure on the boundary Y = OZ. This is a complex line 
bundle V = T Y  N I T Y  c TY .  We define a partial connection on a vector 
bundle E over Y to be a linear map 

V b : F ( E )  ~ F ( E ® a  V*) 

satisfying a Leibnitz rule 

V b ( f s )  = d b f s  + f V b s ,  

where d b is the projection of the exterior derivative to V. I f E  has a fibre metric 
we can consider partial connections compatible with this, in the obvious way 
(and more generally we could define partial connections on principal bundles 
with any structure group). Note that the definition of a partial connection 
does not use the complex structure on V. We now use this complex structure 
to decompose V* ®a C into linear and anti-linear pieces V I,° ~ V °,l, say. The 
projection of d b to V °,1 yields the Ob operator of the complex structure--the 
operator which annihilates the restriction of any holomorphic function on Z. 
We define a CR structure on a bundle E over Y to be an operator 

DE 
Ob " F ( E )  ~ F ( E  ®c V°'l), 

such that O~ ( f  s ) -gb ( f  )S --~ = + f o b  S. A holomorphic bundle over Z restricts to 
a bundle with a CR structure on 0 Z, and any partial connection over Y yields 
a CR structure as its (0, 1 ) component. Just as for holomorphic bundles, on 
a bundle with a metric and CR structure there is a unique compatible partial 
connection. Obviously any genuine connection over Y, and in particular any 
connection over Z, defines a partial connection by restriction. 

We will consider the following boundary value problem for the first order 
instanton equations. When can a given partial connection over Y be extended 
to an instanton over Z ? A naive dimension count indicates that this is a 
sensible problem. For a G-connection over Y is specified locally by three dim 
G functions, but the gauge group accounts for dim G of these, so we think of a 
connection modulo gauge as being specified by 2 x dim G functions. Similarly, 
a partial connection is specified by 2 x dim G functions, and we again subtract 
dim G for the gauge group, so we expect the partial connections modulo 
equivalence to be specified by dim G functions. Thus, when account is taken 
of the gauge symmetry, the partial connection fixes roughly half the data on 
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the boundary, which is appropriate to a boundary value problem for a first 
order equation. 

Let us say that a partial connection V b on a bundle E is "holomorphically 
trivial" if the corresponding CR structure 0~ is equivalent to the trivial 
structure, i.e., if there is a trivialisation of E which takes 0~ to a sum of 
copies of Ob. Then we have 

Theorem. Let Z be a pseudoconvex domain in C 2 with smooth boundary Y 
and a Kiihler metric which is smooth up to the boundary. A unitary partial 
connection over Y extends to an instanton (on a topologically trivial bundle,) 
over Z i f  and only i f  it is holomorphically trivial, and the extension is then 
unique up to gauge equivalence. 

This is essentially a reformulation of our main result. First, if a partial 
connection V b extends to a (topologically trivial) instanton, the corresponding 
CR structure O~ extends to a holomorphic bundle over Z,  also topologically 
trivial. But we have explained in section 3.1 that any such hoiomorphic 
bundle is trivial so afor t ior i  O~ is holomorphically trivial. In the other 
direction, suppose a partial connection V b on a Hermitian bundle E over Y 

- -E 
is holomorphically trivial and choose a trivialisation of E in which 0 b = Ob- 
The Hermitian metric on E is represented in this trivialisation by a map h 
from Y to 7¢. The partial connection is determined by its (0, 1) part and 
the metric, so V b has "connection matrix" h-lObh. We now apply our main 
theorem to the trivial holomorphic bundle over Z,  to find a metric H • Z ~ 7-t 
which satisfies the Hermitian Yang-Mills equation and with H = h on the 
boundary. Then H - I O H  restricts to h-IObh, and this connection gives the 
desired extension of the original partial connection. 

Finally, suppose we have two instantons A i, A2 on bundles E~, E2 extending 
the same partial connection V b. The instantons define trivial holomorphic 
structures on Ei,E2. In holomorphic trivialisations the isomorphism inter- 
twining the partial connections over the boundary becomes a matrix-valued 
function Z with 0bX = 0. By the extension theorem for pseudoconvex domains 
[18] this extends to a holomorphic function over all of Z. The determinant 
cannot vanish in Z,  since the zero set would have complex codimension 1, 
and would be forced to meet the boundary. So we conclude that the inter- 
twining map extends to a holomorphic isomorphism of E~ and E2 over the 
boundary. Comparing the metrics by this isomorphism then, we may suppose 
that E2 = E~ is the trivial holomorphic bundle, and we have two Hermitian 
metrics H and K satisfying the HYM equation and with H-lObH = K-tObK 
on the boundary. But this means that the endomorphism 17 = H-~K is "co- 
variant constant" with respect to the partial connection on the boundary, and 
its eigenspaces decompose the trivial bundle over the boundary into a direct 
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sum of orthogonal factors E (i), with H = ).iK, say, o n  E (i) for constant 2i. 

(This follows from the fact that a function f on Y with dbf  = 0 is constant.) 
We apply the extension theorem again to extend 17 as a holomorphic function 
over Z: The eigenvalues of ~/ are constant on the boundary so also in Z, 
and hence the eigenspace decomposition 0 u = ~ E (i) also extends holomor- 
phically over Z. Then the uniqueness of the solution to the boundary value 
problem implies that these factors remain orthogonai and H = ) t i K  o n  E (i) 
over Z. Thus the two connections H-IOH, K-IOK are equal over Z. 

To close this section we wish to draw attention to another boundary value 
problem for instantons, which is in a sense a "Neumann problem" to com- 
plement the Dirichlet problem that we have studied in this paper. We seek 
instantons over Z whose curvature vanishes in the two-plane V on the bound- 
ary. Thus locally we are solving the equation A (-6(H-I OH)) = 0 with bound- 
ary condition -O(H-IOH)lv = 0. This boundary condition mixes normal and 
tangential derivatives, since, if the Levi form is non-zero, the restriction of 
-OOH to V involves the first order normal derivative of H. While we are not 
able to say much about the solutions to this problem, it can be motivated in a 
number of ways. First, in terms of the geometry of the space/3r of equivalence 
classes of  connections over Y. We have a restiction map rt :/3r ~ 13~ from 
connections to partial connections, and a sub-set T C/3~, of partial connections 
which are holomorphically trivial. Our result above says that the boundary 
values Lz, in the case when Z is pseudoconvex, form a section of rt over T. 
Since the Levi form of Y is non-degenerate there is another cross-section Z" 
of re (over all of  13r v) consisting of the connections whose curvature in the V 
plane is zero; that is, any partial connection has a unique extension to a full 
connection with V curvature zero. To see this we can work locally and choose 
a pair of vector fields vl,/)2 spanning V. The curvature of a connection V in 
the V plane is given by 

F (vl,/)2 )S = Vvl V~2S -- V v2Vvl s - V [vj,v2 ]s. 

For a connection V extending a given partial connection V b the first two 
terms on the right hand side are determined by V b, so the condition that 
F ( V l , V 2 )  = 0 determines Viv, a,2l in terms of V b. But if the Levi form is 
non-degenerate [vi,v2] generates TY/V,  so the connection V is completely 
determined. In this picture, our "Neumann problem" asks for the intersection 
of the two sub-manifolds Z', Lz. 

On the other hand, we can motivate this boundary condition by a variational 
problem. We suppose that the K~ihler metric co can be written as iOOqS, where 
4> is a function which is positive on Z and vanishes on the boundary. For 
example, this is the case i f Z  is the unit ball in C 2, when ~b(z) = l - I z l  2. We 
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consider the functional 

S(H)  = / z  Tr(FH AFH)qL 

For a variation qH in the metric the variation of  S is 

J S  = f z  Tr(OOHr/A F/~)~b. 

One integration by parts expresses this as 

fz Tr(OHq A FM) A -6~ + foz Tr(0Hr/A F)~b, 

and the boundary term vanishes since q~ is zero there. We integrate by parts 
again to write 

~S= fzTr(qAFHA-GO~) + fozTr(~AFHAO~). 

Note that 00~b = -io9 and Fn A co = AFn vol., so S is stationary with respect 
to compactly supported variations if and only if the Hermitian Yang-Mills 
condition iAFn = 0 holds. We consider now two cases: In the first we fix the 
metric on the boundary, so ~/vanishes there and the boundary integral is zero. 
Then the critical points are just the solution of the Dirichlet problem we have 
considered before, and the function S can be identified with the functional R 
we discussed in section 3.3. In the other case we allow unrestricted variations 
q. Then S is stationary if the boundary integral also vanishes, which requires 
that Fn A 0~b = 0, but this is precisely the boundary condition (FH, V) = 0 
that we want. 

4. Conclusion 

In this paper we have seen how the Dirichlet problem for Hermitian Yang- 
Mills connections yields pleasant extensions of  a number of  different results. 
We have seen that the loop groups E2G appear as natural companions of the 
moduli spaces of  flat G-connections over Riemann surfaces, with generalisa- 
tions on the one hand via Hitchin's equations to hyper-K~ihler structures on 
g2G c which are counterparts of the flat G c connections on a closed surface, 
and on the other hand to higher dimensions. There are a number of  other 
questions which these ideas suggest, but which we have not pursued further. 
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Harmonic maps into GC/G. We have see that the hyper-K~ihler structure on the 
complexified loop space I2G e relies on the solution of the Dirichlet problem 
for harmonic maps from the disc into the symmetric space GC/G. There is 
an extensive literature on the construction of  harmonic maps into a compact 
group G, the dual symmetric space of GC/G, and their relation with Loop 
groups [24,27]. It would be interesting to know if there were similar explicit 
constructions for harmonic maps into GO~G; these might yield explicit formulae 
for the metric on £2 G c. 

Instantons and holomorphic maps. Atiyah has shown how, following a rather 
roundabout route, instantons on R 4 may be identified with holomorphic curves 
in loop groups I2G [1 ]. One of  the key steps in this identification theorem 
is the factorisation theorem which we discussed in section 3.1. On the other 
hand there is a much more transparent relationship between holomorphic 
maps from one surface S to the moduli space M(27) of fiat connections on 
another (closed) surface 27, and the instantons on S x 27. We can see this 
either by going through holomorphic bundles or by taking an "adiabatic limit" 
of the instanton equations, when the metric on the product is shrunk in the 
27 factor [23]. The affinity between the loop groups and moduli spaces of  fiat 
connections suggests that it may be possible to obtain Atiyah's correspondence 
by some sort of  adiabatic limit. 

The Riemann mapping theorem. We have seen that the prototype of  our 
Dirichlet problem is equivalent to the factorisation theorem in loop groups, 
which may be written in the form 

LG/G = LGC/L+G c, 

closely analogous to the two descriptions of "flag" manifolds G/T = GC/B. 
Segal has explained [25] how to extend this analogy, taking in place of G 
the group of  diffeomorphisms of  the circle Diff(S I ). As a substitute for the 
complexification Segal takes the semigroup Diffc(S 1 ) of  maps from S I the 
disc, with a composition law defined by gluing the resulting complex annuli. 
The analogue of a maximal parabolic sub-group is the set H o l c  Diff c (S I ) of  
maps which are the boundary values of holomorphic embeddings of  the disc 
in itself. Then the factorisation formula 

Diff(S 1 ) /PSL(2,•)  = Diffc(S t ) /Hol  

is correct, and a moment's thought shows that this is a restatement of the 
Riemann mapping theorem (for compact domains in C with smooth bound- 
ary). On the other hand we can formulate this statement in another way as 
the solution of  a boundary value problem for a metric of constant curvature, 
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with a boundary of  constant geodesic curvature. This is, of course, completely 
in line with our formulation of  the factorisation theorem for loop groups. It is 
natural to hope that, extending this pattern, there may be some generalisation 
of the circle of  ideas we have discussed in this paper to Riemannian metrics 
in higher dimensions. 

Appendix A. Vector bundles over pseudoconvex domains 

In this appendix we will prove that, if Z is a bounded strictly pseudoconvex 
domain in C 2 with smooth boundary, then any (topologically trivial) holo- 
morphic bundle over Z,  as defined in section 2.1, is trivial. As we mentioned 
in section 3.1, Grauert proved the corresponding result for bundles over the 
open manifold: the difficulty is that a priori the trivialisations furnished by 
Grauert's result may not extend to the boundary. The key step in our proof 
will be to show that a rank-2 vector bundle over Z is the restriction of  a 
bundle over a larger domain (and in fact over all of  C 2); then Grauert's result, 
applied to this larger domain, immediately gives the desired conclusion. For 
simplicity we will assume that all bundles over Z are topologically trivial, as 
would occur, for example, if Z is homeomorphic to a ball. 

Our strategy is to reduce the proof to the linear theory. We have the following 
general result: 

m 

Proposition 4. I f  E is a holomorphic bundle over Z the Dolbeault cohomology 
group H I (3;  E) is trivial and the holomorphic sections of  E over-Z generate 
E at each point o f  Z. 

We emphasise that in this proposition we are considering data --holo- 
morphic sections and the forms defining the Dolbeault cohomology-- which 
are smooth up to the boundary. The result is essentially a standard application 
of  the solution of  the 0 Neumann problem [18] and can be proved by 
combining the methods of ref. [18] (for the case when E is trivial) with the 
use of a weight function as in ref. [15, section 5.6], to absorb the extra terms 
coming from the auxiliary bundle. 

We will now proceed by induction on the rank of the bundle E. The case 
of a line bundle reduces immediately to cohomology, since the isomorphism 
classes of line bundles over 3 correspond to H I (Z-, 0 " ) .  We have an exact 
sequence 

H l ( 3 ; 0 )  ~ H l (Z;O*)  ---, H2 (Z; 71), 

in which the first term vanishes by proposition 4, applied to the trivial bundle. 
So the holomorphic classification of  line bundles coincides with the topological 
classification by the first Chern class. 
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Now suppose the result is known for rank n - 1 > 2 and let E be a bundle 
of  rank n. Since E is generated by its sections a generic section s o f  E will 
not vanish anywhere in Z ,  so we can fit E into an exact sequence: 

s E '  O ~ O ---, E ---, -- ,0,  

where E '  has rank n -  1. These extensions are parametr ised by the cohomology 
group H I ( 3 ;  (E ' )* )  which vanishes by our  proposit ion.  So the exact sequence 
can be split, and E = O ~ E ' .  Now, by our  inductive hypothesis E'  and hence 
also E is trivial. 

It remains then to close the gap in the induction with the case when E has 
rank 2. In this case a generic section s o f  E has no zeros on the boundary  
OZ, and a finite set o f  transverse zeros z~ . . . . .  Zd in the interior. We obtain 
an exact sequence 

S 

O ~ O - - - ,  E - - , Z  ~ O ,  

where I is the ideal sheaf of  the set of  points zi. It is straightforward to adapt 
the theory descibed in ref. [13, ch. 5] to show that such extensions over  Z 
are parametr ised by a group A which fits into an exact sequence 

H I ( 3 ; 0 )  ~ A ---, ~2 i  --* H 2 ( Z ' ;  O) ,  

where 2i is a copy o f  C associated to the point  zi. Since H I ( 3 ; O )  = 0 the 
extension class is de termined entirely by its image (1;) in the local part ~J-i- 

Now, going backwards, since H2(¢2;  O) = 0 we can construct  an extension 

O ~ O ~ V ~ Z - ~ O  

over the whole o f  C 2 which maps to the same local extension data (li). Hence 
E is the restriction to 3 of  the bundle V over  C 2 and we can apply Grauert ' s  
result. 

The au thor  is grateful to Peter  K.ronheimer and Grahame  Small for a number  
of  useful suggestions and discussions. 
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